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Abstract We consider a discrete-time stochastic growth model on d-dimensional lattice.
The growth model describes various interesting examples such as oriented site/bond perco-
lation, directed polymers in random environment, time discretizations of binary contact path
process and the voter model. We study the phase transition for the growth rate of the “total
number of particles” in this framework. The main results are roughly as follows: If d > 3 and
the system is “not too random”, then, with positive probability, the growth rate of the total
number of particles is of the same order as its expectation. If on the other hand, d =1, 2, or
the system is “random enough”, then the growth rate is slower than its expectation. We also
discuss the above phase transition for the dual processes and its connection to the structure
of invariant measures for the model with proper normalization.

Keywords Phase transition - Linear stochastic evolutions - Regular growth phase - Slow
growth phase

1 Introduction

We write N = {0,1,2,...}, N* ={1,2,...} and Z = {£x;x € N}. For x = (x,...,
x4) € R, |x| stands for the ¢'-norm: [x| = Y7, |x;|. For & = (&),ep¢ € RZ, |&| =
Y rezd |&c|. Let (2, F, P) be a probability space. We write P[X]= [ X dP and P[X : A] =
f 4 X dP for arandom variable X and an event A.

1.1 The Oriented Site Percolation (OSP)

We start by discussing the oriented site percolation as a motivating example. Let 7, ,,
(t,y) € N* x Z¢ be {0, 1}-valued i.i.d. random variables with P,y =1 =pe(01).
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The site (¢, y) with 1, , =1 and 7, , = 0 are referred to respectively as open and closed. An
open oriented path from (0, 0) to (, y) € N* x Z is a sequence {(s, x,)}'_, in N x Z“ such
that xo =0, x; =y, |x; —x,-1| =1, n5x, =1 forall s =1, ..., . A common physical inter-
pretation of OSP is the percolation of water through porus rock. Due to gravity, the water
flows only downwards and it is blocked at some locations inside the rock. A variant of OSP
is also used to explain the formation of galaxies, where a site (¢, x) being open is interpreted
as the birth of a star at time-space (t, x) [13].

For oriented site percolation, it is traditional to discuss the presence/absence of the open
oriented paths to certain time-space location. On the other hand, we will see that the model
exhibits a new type of phase transition, if we look at not only the presence/absence of the
open oriented paths, but also their number. Let &, , be the number of open oriented paths
from (0, 0) to (¢, y) and let [N,| = yezd N, be the total number of the open oriented paths

from (0, 0) to the “level” ¢. Then, |N,| e (2dp)~"|N,| is a martingale (Each open oriented
path from (0, 0) to (¢, y) branches and survives to the next level via 2d neighbors of y,
each of which is open with probability p). Thus, by the martingale convergence theorem the
following limit exists almost surely:

~ def . -
|Noo| = lim |N|.
t—00

As applications of results in this paper, we see the following phase transition.

i) If d > 3 and p is large enough, then, [N | > 0 with positive probability.
ii) Ford = 1,2, |[N| = 0, almost surely for all p € (0, 1). Moreover, the convergence is
exponentially fast ford = 1.

This phase transition was predicted by T. Shiga in late 1990’s. The proof however, seems to
have been open since then.

We note that N, , is obtained by successive multiplications of i.i.d. random matrices. Let
A= (A xy)y yezd, t €N, where A, ;. , =1,y =1yn;,y- Then,

D NitxArry =Ny, teN. (1.1)

xezd

We also prove the following phase transition in terms of the invariant measure for the
Markov process N, = ((2dp)*’N,,y)y€Zd. Note that we can take any N, € [0, oo)Zd as the
initial state of (N,) via (1.1).

iii) Suppose that d > 3 and p is large enough. Then, for each o € (0, c0), (N,) has an
invariant distribution v,, which is also invariant with respect to the lattice shift, such
that f[o’oo)zd nodvy(n) = a.

iv) Suppose thatd = 1,2 and p € (0, 1) is arbitrary. Then, the only shift-invariant, invariant
distribution v for (N,) such that /‘[Oqoo)zd nodv(n) < oo is the trivial one, that is the point
mass at all zero configuration.

We will discuss the above phase transitions i)—iv) in a more general framework.

In this paper, we point out that many other models beside OSP have similar random
matrix representations to (1.1), and that the phase transitions i)—iv) are universal for these
models.
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1.2 The Linear Stochastic Evolution

We now introduce the framework in this article. Let A; = (A; )y yeza, I € N* be a se-
quence of random matrices on a probability space (€2, F, P) such that

Ay, Ay, ... areiid. (1.2)

Here are the set of assumptions we assume for A;:

Ai,y>0 forallx,yeZ. (1.3)
The columns {A; .}z« are independent. (1.4)
P[A],,]<oo forallx,yeZ" (1.5)
Aiyy=0 as.if [x —y| > ry for some non-random r4 € N. (1.6)
(Al toyiosyezd = A, forall z e Z¢. (1.7)

The set {x € Z%; Y .ezd Qx4yay 7 0} contains a linear basis of RY,
) T (1.8)
where a, = P[Aj0,,].

Depending on the results we prove in the sequel, some of these conditions can be relaxed.
However, we choose not to bother ourselves with the pursuit of the minimum assumptions
for each result.

We define a Markov chain (N;),cn with values in [0, oo)Zd by

D NetwAiey =Ny, teN (1.9)

xezd

Here and in the sequel (with only exception in Theorem 4.1.3 below), we suppose that the
initial state N, is non-random and finite in the sense that

the set {x € Z%; Ny, > 0} is finite and non-empty. (1.10)

If we regard N, € [0, oo)Zd as a row vector, (1.9) can be interpreted as
N; = NoAAy--- Ay, t=1,2,....

The Markov chain defined above can be thought of as the time discretization of the linear
particle system considered in the last Chapter in T. Liggett’s book [10, Chap. IX]. Thanks to
the time discretization, the definition is considerably simpler here. Though we do not assume
in general that (N,),cn takes values in NZd, we refer N, , as the “number of particles” at
time-space (¢, y), and | N;| as “total number of particles” at time ¢.

We now see that various interesting examples are included in this simple framework. In
what follows, §, y, = 1(,—y) for x, y € 7Z¢. Recall also the notation a, from (1.8).

o Generalized oriented site percolation (GOSP): We generalize OSP as follows. Let n, ,,
(t,y) € N* x Z4 be {0, 1}-valued i.i.d. random variables with P(m;y=1)=pel0,1] and
let &y, (¢, ¥) € N* x 74 be another {0, 1}-valued i.i.d. random variables with Py=1)=
g € [0, 1], which are independent of 7, ,’s. To exclude trivialities, we assume that either p
or g isin (0, 1). We refer to the process (N,),en defined by (1.9) with

At,x,y = 1{\x—y\:l}nt,y + Sx.yg-t,y
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as the generalized oriented site percolation (GOSP). Thus, the OSP is the special case
(g = 0) of GOSP. The covariances of (A; y ), yezs €an be seen from:

q ifx=X=y,
ay = pl{\y\=l] + qay,(h P[At,x,yA[.}'.y] =37 if |X - y| = |}_ y| = 1,
a,_ra,_x if otherwise.
- (1.11)
In particular, we have |a| =2dp + q.

o Generalized oriented bond percolation (GOBP): Let n, . ,, (¢t,x,y) € N* x 7% x 7 be
{0, 1}-valued i.i.d. random variables with P(n,, =1) = p € [0,1] and let ¢, (¢,y) €
N* x Z¢ be another {0, 1}-valued i.i.d. random variables with P(&,y=1)=gq €0, 1], which
are independent of 7, ,’s. Let us call the pair of time-space points ((t — 1, x), (¢, y)) a bond
iflx —y| <1, x,y)eN" xZ¢ x Z¢. Abond ((t — 1, x), (t, y)) with |x — y| = 1 is said
to be openif n, ., =1,and abond ((t — 1, y), (¢, y)) is said to be open if ¢; , = 1. We refer
to this model as the generalized oriented bond percolation (GOBP). We call the special case
q = 0 oriented bond percolation (OBP). A variant of OBP is used to describe the electric
current in non-crystalline semiconductors (silicon, germanium, etc.) at low temperature and
subject to strong electric field [16]. There, the electrons, which are almost localized around
the impurities, hop discontinuously from one impurity to another in the direction opposite
to the electric field (hopping conduction). A bond ((t — 1, x), (¢, y)) with x # y being open
is interpreted that an electron hops from (t — 1, x) to (¢, y).

For GOBP, an open oriented path from (0,0) to (¢,y) € N* x Z? is a sequence
{(s, x)}._o in N x 74 such that xy = 0, x, = y and bonds ((s — 1, x,_), (s, X)) are open for
alls=1,...,7. If No = (0,y)yezd- then, the number N, , of open oriented paths from (0, 0)
to (t,y) € N* x Z4 is given by (1.9) with

At,x,y = 1{|x7y\:1}77t.x,y + 8x,y§-t,y~

The covariances of (A; , ), yez¢ can be seen from:

Ay_x ifx=Xx,

ay = pl{IyI:I) +q8y4,07 P[At,x,yAt,f,y] = { (1.12)

ay_xay_x if otherwise.

In particular, we have |a| =2dp + q.

e Directed polymers in random environment (DPRE): Let {n, ,; (t,y) € N* x Z4} be iid.
with exp(A(B)) et Plexp(Bn;,y)] < oo for any B € (0, 00). The following expectation is

called the partition function of the directed polymers in random environment:
t
v (30 )5 =] en
u=1

where ((S;):en, P3) is the simple random walk on 74 . We refer the reader to a review paper
[5] and the references therein for more information. Starting from Ny = (8¢ )¢z« the above
expectation can be obtained inductively by (1.9) with

1 x—y|=1
At,x,y = %exp(ﬁnt,y)-
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The covariances of (A, ), yez¢ can be seen from:

A
_ Py

ay = 2d s P[Ar,x.yAt,f,y] = ek(Zﬁ)_zMﬂ)ayfxayff- (113)

In particular, we have |a| = ¢*®.

e The binary contact path process (BCPP): The binary contact path process is a continuous-
time Markov process with values in NZJ, originally introduced by D. Griffeath [8]. In this
article, we consider a discrete-time variant as follows. Let

My =0,1;t,y)eN"xZ%,  {&,=0,1;(,y) e N* x Z%},
{ey; (t,y) e N* x Z%)

be families of i.i.d. random variables with P(n,, =1) = p € [0, 1], P(¢,, =1) = ¢ €[0, 1],
and P(e;, =e) = ﬁ for each e € Z¢ with |e| = 1. We suppose that these three families are
independent of each other and that either p or ¢ in (0, 1) Starting from an Ny € NZd, we
define a Markov chain (N,),cy with values in NZ! by

Nt+l,y = 77t+l,yNt,y—e,+1'y + §t+l,yNt,y’ reN.

We interpret the process as the spread of an infection, with N, , infected individuals at time ¢
at the site y. The &4 , N, , term above means that these individuals remain infected at time
t + 1 with probability g, and they recover with probability 1 — g. On the other hand, the
Ne+1.yNiy—e,.,, term means that, with probability p, a neighboring site y — e,y is picked
at random (say, the wind blows from that direction), and N, ,_,, iy individuals at site y are
infected anew at time ¢ + 1. This Markov chain is obtained by (1.9) with

At.x.y = nt,yl{e,,y:y—x] + é-t.yfsx,y-

The covariances of (A, x ), ,ez¢ can be seen from:
Plyy=ny ay_x ifx =X,
ay = ——

1.14

~

+¢qdo,y, PlAix Azl =1 .
790 [AryArzy] {Sx.yqay;—i-(S;,yqayx if x #X.

In particular, we have |a| = p + ¢.

e Voter model (VM): Let e, ,, (t,y) € N* x Z¢ be Z4-valued i.i.d. random variables with
P,y =0)=1—p(pe(0,1))and P(e;, =e) = % for each e € Z¢ with |e| = 1. We then
refer to the process (V;)cn defined by (1.9) with

At,x,y = 8x.,v+ex,y

as the voter model (VM). Let us suppose that Ny € NZ for simplicity. This process describes
the behavior of voters in a certain election. At time 0, a voter at y € Z¢ supports the candidate
No,y. Then, at time ¢ = 1, the voter makes a decision in a random way. With probability
1 — p, the voter still supports the same candidate, and with probability p/(2d), he/she finds
the candidate supported by his/her neighbor at y + e, (|e;,y] = 1) more attractive, and
starts to support Ny, ,, instead of No . The covariances of (A, ), yez¢ can be seen
from:
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1y=
ay=p=0T (L= p)iyo. PlAicy Ayl =deray . (1.15)

In particular, we have |a| = 1.

Remarks 1) The branching random walk in random environment considered in [9, 17] can
also be considered as a “close relative” to the models considered here, although it does not
exactly fall into our framework.

2) After the first version of this paper was submitted, the author learned that there is a
work by R.-W.R. Darling [6], in which the dual process of (NV;),>¢ (cf. Sect. 4) was considered
and the duals of OSP and OBP are discussed as examples.

Here are the summary of what are discussed in the rest of this paper. We look at the
growth rate of the “total number” of particles:

|Nf|=ZNt¢yy t=1,2,...

yezd

which will be kept finite for all # by our assumptions. We first show that | N; | has the expected
value | Ng||a|', where |a| is a positive number (cf. (1.8) and Lemma 1.3.1), so that |a|’ can be
considered as the mean growth rate of |N;|. The main purpose of this paper is to investigate
whether the limit:

-  def .. t
INoo| = lim |N,|/l]al
—>00
vanishes almost surely or not. Our results can be summarized as follows:

i) If d > 3 and the matrix A, is not “too random”, then, |N | > 0 with positive probability
(Lemma 2.1.1).
ii) In any dimension d, if the matrix A, is “random enough”, then, |Noo| =0, almost surely
(Theorem 3.1.1). Moreover, the convergence is exponentially fast.
iii) Ford =1,2, [No| =0, almost surely, under mild assumptions on A, (Theorem 3.2.1).
The assumptions are so mild that, for many examples, they merely amount to saying
that A, is “random at all”. Moreover, the convergence is exponentially fast for d = 1.

We will refer i) as regular growth phase, and ii)—iii) as slow growth phase. In the regular
growth phase, | N;| grows as fast as its mean growth rate with positive probability, whereas in
the slow growth phase, the growth of | V;| is slower than its mean growth rate almost surely.
There is a close connection between the growth rate of |N,| and the spacial distribution of
the particles:

= Nexy xeZ! (1.16)

Prx = IN,| {IN:|>0}» .

as t /' co. The connection is roughly as follows. The regular growth implies that, condi-
tionally on the event {|N| > 0}, the spacial distribution has a Gaussian scaling limit [12].
In contrast to this, slow growth triggers the path localization on the event {|N,| > 0 for all
t > 1} [18]. We remark that the exponential decay of |N;|/|a|’, mentioned in ii)-iii) above
are interpreted as the positivity of the Lyapunov exponents.

The phenomena i)-iii) mentioned above have been observed for various models; for
continuous-time linear interacting particle systems [10, Chap. IX], for DPRE [2, 4, 5], and
for branching random walks in random environment [9, 17]. Here, we capture phenomena
1)-iii) above by a simple discrete-time Markov chain, which however includes various, old
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and new examples. Here, “old examples” means that some of our results are known for them,
such as DPRE, whereas “new examples” means that our results are new for them, such as
GOSP and GOBP.

In Sect. 4, we discuss the phase transition i)—iii) for the dual processes and its connection

. . .= def.
to the structure of invariant measures for the Markov chain N, o (Niy/lal") yezd - There, we
will prove the following phase transition (Theorem 4.1.3):

iv) Suppose that the dual process is in the regular growth phase. Then, for each o € (0, 00),
(N,) has an invariant distribution v,, which is also invariant with respect to the lattice
shift, such that f[ovoo)ld nodvy(n) = a.

v) Suppose that the dual process is in the slow growth phase. Then, the only shift-invariant,
invariant distribution v for (N,) such that f[o,m)zd nodv(n) < oo is the trivial one, that is
the point mass at all zero configuration.

The above iv)—v) is known for the continuous-time linear systems [10, Chap. IX]. Therefore,
it would not be surprising at all that the same is true for the discrete-time model. However,
iv)—v) seem to be new, even for well-studied models like OSP and DPRE.

As is mentioned before, the framework in this paper can be thought of as the time dis-
cretization of that in the last Chapter in T. Liggett’s book [10, Chap. IX]. The author believes
that the time discretization makes sense in some respect. First, it enables us to capture the
phenomena as discussed above without much less technical complexity as compared with
the continuous time case (e.g., construction of the model). Second, it allows us to discuss
many different discrete models, which are conventionally treated separately, in a simple uni-
fied framework. In particular, it is nice that many techniques used in the context of DPRE
[1-5] are applicable to many other models.

1.3 Some Basic Properties

In this subsection, we lay basis to study the growth of |N;| as t " oo. We denote by F;,
t € N* the o -field generated by Ay, ..., A;.
First of all, we identify the mean growth rate of |N,| with |a|’.

Lemma 1.3.1
PIN,,J=lal' Y No.P§(Si =),

xezd

where ((S;)ien, Pg) is the random walk on 74 such that
PE(So=x)=1 and P{(Si=y)=a,_, = a,_,/lal.
Moreover, (IN,|, F))sen is a martingale, where we have defined N, = (N,,x)xezd by
Niv=lal"'N;,. (1.17)

Proof The first equality is obtained by averaging the identity:

Nf.y = Z NO.X()AI,X(),XI A2¢xl,x2 o 'At,x,,l,y- (118)
XQseesXp—1]
It is also easy to see from the above identity that (| N,|, F;),ex is a martingale. O

We next compare |N,| and its mean growth rate |a|’.
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Lemma 1.3.2 Referring to Lemma 1.3.1, the limit

|No| = lim [N,| (1.19)
—00
exists a.s. and
P[[Noo|]=|No| or 0. (1.20)

Moreover, P[|No|] = | No| if and only if the limit (1.19) is convergent in L' (P).

Before we prove Lemma 1.3.2, we intrgdqce some notation and definitions. For (s, z) €
N x 27, we define N;"* = (N;{)ycze and N, = (N::i)yezd, t € N respectively by

N(i; = 6z,ya N,S_Y:Ly = Z N;;fAs+t+l,x,y,
xezd (1.21)
and Nf)z =lal~"'N;y.

In particular, (N%),cy is the Markov chain (1.9) with the initial state Ny = (8.y)yezd-
Moreover, we have

Niy= Y No.N7 forany initial state No. (1.22)

zezd

Now, it follows from Lemma 1.3.2 that
PN [1=1,0r=0.

We will refer to the former case as regular growth phase and the latter as slow growth phase.
By (1.22) and the shift invariance, P [INso|l = |No| for all Ny in the regular growth phase
and P[|Ns|] =0 for all Ny in the slow growth phase. The regular growth means that, at
least with positive probability, the growth of the “total number” |N;| of the particles is of
the same order as its expectation |a|’|Ny|. On the other hand, the slow growth means that,
almost surely, the growth of |N,| is slower than its expectation.

Proof of Lemma 1.3.2 By multiplying N, by |Ny|~!, we may assume that |Ny| = 1. The

limit (1.19) exists by the martingale convergence theorem, and ¢ e P[INl1 <1 by Fatou’s
lemma. To show (1.20), we will prove that £ = £2, following the argument in [10, page 433,
Theorem 2.4(a)]. Using the notation (1.21), we write

(1) [Nowl=>_NoyIN;"|.
;

Since [N, |2 |N, |, the limit
—s,y . —s,y
NI = 1im [N}
exists a.s. and is equally distributed as [N |. Moreover, by letting r 7 oo in (1), we have

that

Nool =Y NoyINY |
-
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and hence by Jensen’s inequality that
Plexp(—|Noo)|F,] > exp (— P[INool |F;]) = exp (—|N|€) = exp (—|N,]).

By letting s " 0o in the above inequality, we obtain
exp(—[Nw|) = exp (—[Noo|t) = exp (~[Nol),

and thus, |Nso| Z |[Noll. By taking expectation, we get £ = £2. Once we know (1.20), the
final statement of the lemma is standard ([7, page 257-258, (5.2)], for example). O

Let us now take a brief look at the condition for the extinction: lim,_,, |N;| = 0 a.s.,
although our main objective in this article is to study |N | =lim,_ o |N,|.
If |a| < 1, we have

lim |N,| = lim |a|'|N,| =0.
1—>00 1—>00

For |a| = 1, we will present an argument below (Lemma 1.3.3), which applies when (N;);cn
is NZ'_valued. Consequently, we will see that lim,_ o |V;| = 0 for GOSP ans GOBP
with (1 — p)(1 — g) # 0 and for VM with p € (0, 1]. For GOSP and GOBP, we apply
Lemma 1.3.3 directly. For VM, we slightly modify the argument (See the remark after the
lemma).

It follows from the observations above that lim,_, o, |N,| = 0 a.s. if

2dp+qg<1land (1—p)(1—¢q)#0 for GOSP and GOBP,

AB) <0 for DPRE, (1.23)
p+qg<land(l—p)(1—¢q)#0  for BCPP, :
pe(0.1] for VM.
Lemma 1.3.3 Let O, be the set of occupied sites at time t,
0,={xeZN,, >0}
and |O,| be its cardinality. Suppose that
E P ({AL0=0}| >0. (1.24)

xezd
Then,

P(tlirglo|(9,|e{0, oo})=1.

Proof We will see that
1) {10, <m i.0} = {0, =0 i.0.} foranym eN,

which immediately implies the lemma:

{101l A= oo} = [ JUO = m i0} = (|0 =0 i0).

meN
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For (1), we have only to show the eE part. We write 5,_1 = Uxeo,,l (yeZ; |x —y| <ra)
(cf. (1.6)). Since

|0/ =0 <= |N,| = Z Nt—l,xAt,x,y=0’

x,yezd

we have

P(O/=01F=P| () {ZNHXA,,X,FO} Fi

yeO,_ “xezd

> P ﬂ m{Al,x,yZO} -7:tfl
yeO,_ xezd
=[] PN (A1, =0} | =691
yed,_; xezd

This, together with the generalized second Borel-Cantelli lemma ([7, page 237]) implies that

{101 <m io}c{) P(ON=01F1) =00} ={0:1=0i0l}.

t=1

O

Remark For VM, we argue as follows. Since |a| =1, |N;| is a martingale and hence con-
verges a.s. Since |N;| is N-valued, we have |N;_;| = | N;| for large 7, a.s. On the other hand,
for some ¢ = ¢(p, d) > 0, we have

{1 =101l =m} C{P (INi—1] > [N || Fi=1) = "} forallm e N*.
(Replace N,_; , on all y on the interior boundaries of O,_; with 0, while keeping all the

other N;_;, unchanged.) This implies that lim,_, ., |N;| = 0, via a similar argument as in
Lemma 1.3.3.

2 Regular Growth Phase
2.1 Regular Growth via Feynman-Kac Formula

The purpose of this subsection is to give a sufficient condition for the regular growth phase
(Lemma 2.1.1 below) and discuss its application to some examples (Sect. 2.2). The sufficient
condition is given by expressing the two-point function

P [N 1, yN r,i]
in terms of a Feynman-Kac type expectatlon with respect to the independent product of the

random walks in Lemma 1.3.1. We let (S, S) = (S, S,),EN, S, S) denote the independent
product of the random walks in Lemma 1.3.1. We have the following Feynman-Kac formula.
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Lemma 2.1.1 Define

t
er=1_[w(su—17 gu—h SLu 3Iu)’ t> la (21)
u=1
where
P[Al X yAl )77] .
- — = P fa,_ay_y #0,
W E =] @y O 22)
0, ifay_yay_z =0.
Then,
2t
PIN,yNisl=lal™ > NoNozPyile: (S, 5) =y, M (2.3)
x,Xezd

forallt €N, y, 5 € Z¢. Consequently,

PIIN/P1= ) No.NoxP3led, 2.4)
x,xezd
and
supP[|N | l<oo <— supP [ef] < 00 2.5)
teN 5.8
= P[|Nul]=INol. (2.6)

Proof By (1.18) and the independence, we have

(1) P[N,yN,5]= Z Z NOXONMO]'[P[AMIXVAMMY],

X0 sseesXp—1 X0 5o X |

with the convention that x, = y, X; = y. We have on the other hand that
2 ~ ~ \— —
P[Al,xx_l Xs Alﬁc}_l ,F;] = |a| w(-xsfl s Xs—1, X x.v)axxfxx_l Az, —X,_y-

Plugging this into (1), we get (2.3). (2.4) is an immediate consequence of (2.3). We now

law

recall (1.22) and that |N 22N for all € N and z € Z¢. Therefore, it is enough to
prove (2.5) for N; = N;» %9 But this follows immediately from (2.4). (2.6) is a consequence
of Lemma 1.3.2. O

Remarks 1) The criterion (2.5)—(2.6) generalizes what is known as the “L?-condition” for
DPRE [1, 5, 14]. It can also be thought of as a discrete-time analogue of [10, page 445,
Theorem 3.12], where however, more analytical approach (in terms of the existence of a
certain harmonic function) is adopted.

2) The second moment method discussed here is also useful to prove the central limit
theorem for the spacial distribution of the particles [12].

Next, we present more explicit expression for the condition (2.5) and for the covariances
of the random variables (|N |)erd (cf. (1.21)). We set

=inf{r>1;§ = S,} and 7w, = P;’g(tl < 00). 2.7
By (1.8), m, < 1ifd > 3.
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Lemma 2.1.2 Let d > 3. Then, for any x, % € 7¢,

—0,x , ,—0,%
sup P[[N, |IN, |l <00

teN
— PS()"g[e,’,l <ol <1 2.8)
X’f[er 1T < 00]
— PINSINS N =1—m s+ ‘ (—m). (29
1 — [erl T < o0

Proof Note that w(S,_1, §,_1, S, §,) =1 unless §, = §,, which occurs only finitely often
a.s. Thus, e¢,_; = ¢, for large enough #’s and therefore, e,, = lim,_, o €, exists a.s. On the
other hand, let

1
Ty =1nf[t Z 17 Z(SS“,gu = U]~

u=1

Then, by the strong Markov property,

Piles] = P (1 = 00) + Z P} iler, 1Ty < 00 =Tpy1]

o0
=1 -7 g+ P5leq it <001 ) PoSler i 71 < 00" (1= 70). (2.10)
v=1
Now, by (2.3) and Fatou’s lemma, we have that
P 3lea] < sup PXEle,] = sup PN, " |IN) 1.
’ teN ' reN

These prove “=>" part of (2.8) (The argument presented above is due to M. Nakashima [12]).
To prove the converse, we start by noting that

r(p) = P;)‘Sg[efI 171 <o00] iscontinuous in p € [1, 00),
since e;, < supw < oo. Then, by our assumption that (1) < 1, there exists p > 1 such that
r(p) < 1. We fix such p and prove that

(1) sup ‘~[e ] < o0, and thus, (e;);cn is uniformly integrable.
reN

This implies that

(2. @

@ o005 Prile L = SNT

llmP;’g[e,] lim P[IN," ([N, ]I
s,

Also, (2.9) follows from (2) and (2.10). Finally, we prove (1) as follows:
Ss[et]_ Tl>t+ZP” el i1, <t <1yq]
<1 +ZP;’§[efv 1T, < 00]
- o0
=1+ P;‘g[ef] 1T < 09] Zr(p)”—1 <00
v=1
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2.2 Examples
We will discuss application of Lemma 2.1.2 to GOSP, GOBP and DPRE. We assume that
d>3.

Application of Lemma 2.1.2 to GOSP and DPRE: For OSP and DPRE, we see from (1.11)
and (1.13) that

- . 1/p for OSP,
~~| = s V.,V ~ o~ =
PlArey Arzsl =yo0ay-ct5,  withy { exp(1(2B) —~20(8)) for DPRE, 'V
By (2.11),
8y ¥ :
~ _Jy 1fay_xa}~,_; 7é 0,
wx,X,y,5) = {07 ifa, ar =0 (2.12)
and thus,
P [e,, : 7y <00l = y7,.
Therefore, we see from Lemma 2.1.2 that for DPRE and OSP,
sup P[NPl < 00 = moy <1 2.13)
teN
—0,0, —0,x y —
= P[INoollNoj|]=1+nxl_ﬂ 2.14)

The above covariance was computed by F. Comets for DPRE (private communication). Sim-
ilar formula for the binary contact path process in continuous time can be found in [8, 11].
Also, it follows from (2.5) and (2.13) that

— p >y for OSP,
sup PIIN/ "I <00 = {A(Zﬂ)—zx(ﬂ) <1In(1/m) for DPRE. (2.15)
For GOSP with g # 0, we have
1/q ify=y=x=X%,
wx, ¥, y,5)=11/p ify=y, lx—yl=x-yl=1, (2.16)
1o, ay_z~0y if otherwise.
Thus, similar arguments show that:
sup P[|N,|*] <00 <= pAg>m for GOSP with g #0. 2.17)

teN

For OSP and DPRE, (S;);cn is the simple random walks. In this case, 7 is the same as
the return probability of the simple random walk itself, for which we have 1/(2d) < my <
0.3405... for d > 3 [15, page 103]. (2.15) for DPRE case can be found in [14].

Application of Lemma 2.1.2 to GOBP: For GOBP with ¢ # 0, we have
1/q ifx=F=y=75,
wx,X,y, V=14 1/p ifx=xX,y=9y,|lx—yl=1, (2.18)

L, ay_z>0) if otherwise.
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For OBP, we have the formula for w by ignoring the first line of (2.18). Thus,

P;,Y“So‘[erl 1T < 00] = P;"SQ(TI <o0)=m, ifx#0

and

0,0 .
st[erl el

= Pgler it =11+ P{g2 <7 < 00)

1 P \ 1 a \ P\ a \
=-2d + - + 7o —24 -
P 2dp +¢q g \2dp+gq 2dp +q 2dp +¢q

2dp(1 —p)+q(1—q)
(2dp + q)*

=my+c, with c=
Therefore, with ¢ defined above, we have by Lemma 2.1.2 that

sup P[[N,*[Fl <00 &= mo+c<1 (2.19)
teN

—0,0, —0,x
= P[NLIINGII=1+

Remarks 1) For OBP, P[|N-.|?] is also computed in [6, (3.5)]. Unfortunately, the formula
(3.5) in [6] is not correct, due to an error (the law of J(oco) on page 212).
2) The case of BCPP is discussed in [12].

3 Slow Growth Phase

3.1 Slow Growth in Any Dimension

We give the following sufficient condition for the slow growth phase in any dimension. The
condition is typically applies to the limited regions of parameters, which makes particles
“hard to survive” (Remark 1 after Theorem 3.1.1).

Theorem 3.1.1 Suppose that

> P[A1gyInAy,] > lallnal. (3.1)

yezd
Then, there exists a non-random ¢ > 0 such that

N, =0("), ast— 00,as.
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Remarks 1) It is easy to see that

2dp+4q < 1 for GOSP and GOBP,
3.1) < { BN (B) —A(B) > In(2d) for DPRE,
p+qg<l1 for BCPP.

2) Theorem 3.1.1 generalizes [4, Theorem 1.3(a)], which is obtained in the setting of
DPRE. Theorem 3.1.1 can also be thought of as the discrete-time analogue of [10, page 455,
Theorem 5.1].

Proof of Theorem 3.1.1 By (1.22) and the shift invariance, it is enough to prove the result
for N, = N*°. We write

2.,
INi =" Ay, [N

Thus, for i € (0, 1],

h h 2,y \h
|Nt| szl,O,y“Vt—l' .
¥

law

. 2.y
Since |N, 7| = |N,_i|, we have

PIIN,I"1 < PIA}  , IP[IN, 1|,
y

and hence

h
PIN,/"1 < e P[N,_i|"], with <p(h)=ZP|:<A1’O'y> }

5
Note that ¢ (1) = 1 and that
, Ao,y Ato,y
o'(1-)= P|:—"ln<—"' > 0.
2 jal jal
yeZa

(For the differentiability, note that x|Inx| < (he)~! for x € [0, 1], and x"|Inx| < xInx
for x> 1.) These imply that there exists ¢ € (0, 1) such that ¢(hg) < 1, and hence that
P[|N;|"0] < @(hy)’, t € N. Finally the theorem follows from the Borel-Cantelli lemma. [J

3.2 Slow Growth in Dimensions One and Two

We now state a result (Theorem 3.2.1) for slow growth phase in dimensions one and two.
Unlike Theorem 3.1.1, Theorem 3.2.1 is typically applies to the entire region of the parame-
ters in various models (cf. Remarks after Theorem 3.2.1).

For £, g € [0, 00)Z" with | f], |g| < 0o, we define their convolution f x g € [0, 00)%’ by

(f*g)x= Z Se-y8y-

yezd

The identity: |(f * g)| = | f||g| will often be used in the sequel.
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Theorem 3.2.1 Let d =1, 2. Suppose that P[Aio.),] < o0 forall y € Z¢ and that there is a
constant y € (0, 00) such that

Z (P[Al,x,yAl,Y,y] - yay—xay—f) Sxé}? > 0 (32)

x.X,yezd
forall & €0, oo)Zd such that |&| < co. Then, almost surely,

| =0(xp(—=ct)) ifd=1,
|N1|{_>0 ifd=2 ast — 00, (3.3)

where c is a non-random constant.

Theorem 3.2.1 is a generalization of [2, Theorem 1.1], [4, Theorem 1.3(b)] and [3, The-
orem 1.1], which are obtained in the setting of DPRE. The proof of Theorem 3.2.1 will
be built on ideas and techniques developed there. Theorem 3.2.1 can also be thought of as
a discrete-time analogue of [10, page 451, Theorem 4.5]. Before we present the proof of
Theorem 3.2.1, we check condition (3.2) for GOSP, GOBP, DPRE and BCPP.

Condition (3.2) for OSP and DPRE: By (2.11), (3.2) holds for OSP for all p € (0, 1) and for
DPRE for all g € (0, o0).

Condition (3.2) for GOSP and GOBP: We introduce

by=)Y aya,, and b}=Y PlA1gyA1.,] forxeZd (3.4)

yezd yezd
Then, (3.2) is equivalent to
D (bli—be )&= (v — Di@x£)’).
x,5ezd
Note that |(a % £)?| < |a|?*|£?|. Thus, if there exists ¢ € (0, c0) such that
b* > b, +cdy, forall x € Z¢, (3.5)
then, we have (3.2) with y = 1 + (c/|a|?). For GOSP, we have by (1.11) that

=2dp2 —|—q2, ifx=0,
by =2pq if [x[=1,
>0 if |x| =2,

2dp +q, ifx=0,
bf: 2pq if x| =1, bX:bfzo if |x| > 3.
pib,iflx|=2,

The above are the same for GOBP, except that bf = b, for |x| =2 for GOBP. Thus, (3.5)
holds for GOSP and GOBP with ¢ =2dp(1 — p) +q(1 — q).

/C:ondition (3.2) for BCPP: For & € RZ with || < 0o, we denote its Fourier transform by
EO)=Y cgabcexplix-0),0 €[—m, x]" If

o min_(BA®) - [@@®)P) >0, (3.6)

fe[—m,m)d
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then, (3.2) holds with y = 14 (¢ /|a|?). This can be seen as follows. Note that (3.2) can be
written as:

D E&bl o= yl@x£)?.

x,xezd
Then, by Plancherel’s identity and the fact that |(a * £)?| < |a|?|£2|, we have that

D &b = n) /

x,xezd [-m.7]

) bAO)[E©)Pd6 > (27) / ([@@)? +c)E®)do

[—m.7]¢

= (@ %)’ + g’ = (1 +c1/lalP)(@ % §)*|.

The criterion (3.6) can effectively be used to check (3.2) for BCPP. In fact, we have by (1.14)
that

=L +q% ifx=0,

p+gq, ifx=0,
i 1 =
b =4 if x| =1, A = Lg if x| =1,
-0 if [x] =2, 0 if x| > 2.
=0 if x| >3

Hence, (3.5) fails in this case. On the other hand,

a®) =

SV

d d

~ 2
E cos; +q, bA(O):p—i—q—l—% E cosé;.
j=1 j=1

Thus, (3.6) can be verified as follows:
2

d
bAO) - @O =p+q—q’— | 5D cost; | =p(l—p)+q(l—gq)>0.
j=1

SMIRS]

Proof of Theorem 3.2.1 We will first prove that for 4 € (0, 1),

O(exp(—ct'?))  ifd=1,

O(exp(—cv/inD)) ifd=2 »177% (3.7)

P[IN,|"] = {

where ¢ € (0, 00) is a constant. This implies that lim,_, o, IN,|=0,as. by Fatou’s lemma. To
prove (3.7), we will use the following two lemmas, whose proofs are presented in Sect. 3.3.
Recall that the spacial distribution of the particle p, . is defined by (1.16).
Lemma 3.2.2 For h € (0, 1), there is a constant ¢ € (0, 00) such that
P[1-U!NF_i]=cla*p—1)? forallteN*,

where U, = ﬁ > e yezd Pi—1xArxy-
Lemma 3.2.3 Forh e (0,1) and A C Z¢,

IAIP[IN11"@* p—D)?I] = P[IN,—1]"] = 2PJ(S, & M), (3.8)

forallt € N*, where ((S;)sen, Pg) is the random walk in Lemma 1.3.1.
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‘We have

|Nz|—| | > NioixArsy =IN|UL (3.9)

x,yezd

where U, is from Lemma 3.2.2. We then see from Lemma 3.2.2 that for 4 € (0, 1)
PIIN|"|F-i]1 = IN " = N1 |"P[U] = 1|1 Fio1] < —c|N -1 |" (-1 x @)%
We therefore have by Lemma 3.2.3 that

(1) PIIN.|"T< (1 - L) (N "+ 2—P()(Sr g
B |A] |A]

We set A = (—+/10, /2, /12, /219 N Z¢, where for £, = t'/3 for d = 1, and ¢, = +/Int for
d = 2. Then,

PS¢ =P

St/\/;‘ > \/Z/2> < crexp(—cty),

so that (1) reads,

— c
PN, "l < (1_W> (N AT+ (o ep(=eaty)

By iteration, we conclude (3.7).
It remains to prove (3.3) for d = 1. For d = 1, we will prove that for & € (0, 1),

P[IN|"] = O(exp(—ct)), t—> o0,

where ¢ € (0, 00) is a constant. Then, (3.3) for d = 1 follows from the Borel-Cantelli lemma.
Since the left-hand-side is non-increasing in ¢, it is enough to show that for some s € N*,

(2)  PIINus|"1= O(exp(—cn)), n—> oo.

We write

|Ns+t|—ZN”|N”| with [N | = Z Asity Asirnn  Astr -

Xse
Thus, for 2 € (0, 1),

Nosl" <ZN" NS

S,y law

Since |N;’ |N¢|, we have by (3.7) that

(3) P[IN,IM ZP[NW [IN,|"] < c1sexp(—cas'?)P[IN,|"]  forall r € N*.

We now take s € N* such that c;s exp(—c;s'/?) < 1. Then, (2) follows from (3). O
3.3 Proofs of Lemma 3.2.2 and Lemma 3.2.3

We first prepare a general lemma.
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Lemma 3.3.1 Suppose that (U,),cn be non-negative random variables such that
cov(Uy,, U,) =0 ifm#n,
Y PW,I=1, Y PIU1<os,

n>0 n>0
PLU =11 <er ) var(Uy),
n>0

where U = Zn>0 U, and c, is a constant. Then, for h € (0, 1), there is a constant c, €

(0, 00) such that

1

-1y
Tre > var(U,) < P [—] <aP[1-U"].

s U+1

Proof Since (U,) are uncorrelated, we have that

U-1
) =P[(U—-1)7°]=P -1 1
Y “var(U,) = P[(U — 1)’] [«/U—H(U )\/U+:|

n>0

ISR
< P[—(lljj +11) } P -1 +1]"

and that

PlU—-1’W+D]=P[U -1 +20U - 1’| < (c1 +2) Y _ var(U,).

n>0

Combining these, we get the first inequality. To get the second, we define a function:
f@)=1+hu—1)—u", uel0,o0).

Note that P[U] =1 and that there is a constant ¢, € (0, o0) such that

for all u € [0, 00).

BTy
Fay= 4 ?

C2
‘We then see that

Ty
Pli-v=riron=r| G2
2

U+1

d

Proof of Lemma 3.2.2 We may focus on the event {|N,_;| > 0}, since the inequality to prove

is trivially true on {|N,_;| = 0}. We write

_ 1
U= U, withU,,= al > protaAry.

yezd xezd

For fixed ¢ € N*, {U, ,},czs are non-negative random variables, which are conditionally
independent given F;_;. We will prove the lemma by applying Lemma 3.3.1 to these random
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variables under the conditional probability. The (conditional) expectations and the variances
of {U; y},eze¢ are computed as follows:

def. _
My = PlU; )| Fii] = (-1 % @)y,

def.

Uy = P[(Ul.y _mt,y)2|-7:'tfl]
1
= W Z pt—l,xlpt—l,xZCOV(At,XI,w At,xz,y)-
X[,XzEZd

Hence,

Z myy = loi—1*al =1,

yezd

1
Z Uy = W Z Pr—1,x; pt—l,xQCOV(At,xl,yv At,xz,y)

yezd x1,x0,y€Zd
(3.2 —
> col(pi—1 xa)”|. (3.10)
We will check that there exists ¢; € (0, 0o) such that
(1) PLU =1} Fal<er Y v, forallr € N*.
yezd
Then, the lemma follows from Lemma 3.3.1 and (3.10). There exists ¢, € (0, c0) such that

(2) PIA}y ] <ca; forallyeZ?.
This can be seen as follows: Note that a, =0 < A; o, =0, a.s. This implies that, for each
y € R, there is ¢, € [0, 00) such that P[A?.O, 1= cyaf,. Therefore, we have (2) with ¢, =
SUP|yj<r, Cy (cf. (1.6)). By (2), we get

y

3

3
1
3 —
PIULIF-] = o5 > ATTers | P{TT A
j=1

x1,%2,x3€24 \J=1

3
Holder
< a Y. |\[]e-1ya@s | =cte =D} G.11)

x1,x0,x3€Zd \ j=1
Consequently, (1) can be verified as follows:
PlUpy = D)1 Fia] = Y PlUpy —my )| Fii]
yezd

3 (PIUR|Fial+m] )

yezd

IA

3.11)

3.10) ¢

—\3 3

< C3§ (Pt—l*a)y < _C E Uty
0

yezd yezd O
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Proof of Lemma 3.2.3 We have on the event {|N,_;| > 0} that

2

\

Ao %@ = (ALY (o x @3 = | Y (o1 @),

ZEA yeA

2

=|1- Z(szl xa), | =1 —ZZ(p,,l * Q)

YEA YEA
h
>1-2|) (o xa), | . (3.12)
YEA
Note also that
h — h
PlINCiD) (o #@)y | | <P IN-ilD (o %),
YEA L YEA

h

=P|Y (N_i*a), | =P ¢, (313)

| YEA

where the last equality comes from Lemma 1.3.1. We therefore see that

— . (3.12) — — _
IAMP[IN "oy @] = P[IN "] =2P | [ N1l ) (o %),
YEA

(3.13) _
> P[IN"] —2PJ(S, ¢ A" O
4 Dual Processes

In this section, we assoiiate a dual object to the process (NV,);cn and thereby investigate
invariant measures for (V,);cn. This can be considered as a discrete analogue of the duality
theory for the continuous-time linear systems in the book by T. Liggett [10, Chap. IX].

4.1 Dual Processes and Invariant Measures
We define a Markov chain (M, ),y with values in [0, oo)Zd by

> AyaMii =M, teN, (4.1)

xezd

where the initial state M, € [0, oo)Zd is a non-random and finite (cf. (1.10)). We refer
(M,)sen as the dual process of (N,),en defined by (1.9). Regarding (M,) as column vec-
tors, we can interpret (4.1) as:

M, =AA_y--- A1 M.
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The dual process can also be understood as being defined in the same way as (1.9), except
that the matrix A, is replaced by its transpose: A = (A y.x)(x,y)ezd xzd -
By the same proof as Lemma 1.3.1, we have:

Lemma 4.1.1

P[M,y1=lal' Y Mo Pi (=S =y),

xezd

where ((S)):en, Pg) is the random walk in Lemma 1.3.1. Moreover, (IM,|, F))sen is a mar-
tingale, where we have defined M, = (M, ) cz4 by

M, =la|"" M, . (4.2)

Also, Lemma 1.3.2 holds true with N, replaced by M,. Accordingly, we have the defi-
nition of regular/slow growth phase for the dual process in the same way as for the (N,)-
process. For (s,z) € N x Z4, we define M;"* = (M) cz¢ and M: = (Mf:;)yeza, teN
respectively by

My =0y, NS, =D MIAciiy.,
. cezd 4.3)
and M” =la|™"'M;.
(Ny):en and (M,),en are dual to each other in the following sense:

Lemma 4.1.2 For each fixed t € N*,

0,x law 0,y
(Nt,y )(x.y)edeZd - (Mr,x )(x,y)edeZd . (44)

Proof We have

0,y
M, = E Aty Ar—txyn Az 5x Al x

X1 Xp—] EZd

law 0,x
= E Aty Azx g Armix g Ary o = Nf,y :

X1 Xp—] EZd

This shows that the left-hand-side of (4.4) is obtained from the right-hand-side by the
measure-preserving transform (Ay, Az, ..., A;) —> (A, Ay, ..., Ay). O

The following result show that the structure of invariant measures of (N,) depends on
whether the dual process (M,) is in the regular or slow growth phase. To state the theorem,
it is convenient to introduce the following notation: Let P ([0, oo)Zd) be the set of Borel
probability measures on [0, oo)Zd, and

7 ={ue PO, oo)Zd); W is invariant for the Markov chain (N,)},

S ={uneP(O0, oo)Zd); W is invariant with respect to the shift of Z¢}.
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Theorem 4.1.3 a) Suppose that P[|M |] = 1. Then, for each o € [0, 00), there is a v, €
Z NS such that

/[0 Zd nodve () = a. 4.5)
,00)

Moreover, vy is extremal in TN S.
b) Suppose on the contrary that P[|M(;0|] =0. Then,

{,uGIﬂS, ; / lnodu(n)<oo}:{50},
[0,00)%
where 0y is the unit point mass on 0 = (0) ,cz4.

Proof a): Let (N);en be the (N;)-process such that NJ , = 1 for all x € Z?. We have by
Lemma 4.1.2 that
—1 law
N, = (@M, ]), e,
where (xN = (ocN, y)yezd- Since the right-hand-side converges a.s. to (ozIM |))ezd as
t — 00, we see that the weak limit

va_ hmP(ozN e)

—00
exists and that

W) vy =P (@M )z € ).

We see v, € Z from the way v, is defined. Also, v, € S, since P(ozﬁ,1 € ) € S for any
t € N* by (1.7). Moreover, (1) implies (4.5). The extremality of v, follows from the same
argument as in [10, page 437, Corollary 2.1.5 ].

b): This follows from the same argument as in [10, page 435, Theorem 2.7 ]. O

4.2 Regular/Slow Growth for the Dual Process

In this subsection, we adapt arguments from Sects. 2 and 3 to obtain sufficient conditions
for regular/slow growth phases the dual process. A motivation to investigate these sufficient
conditions is explained by Theorem 4.1.3.

We let (S, S) = ((S;, S,),GN, ~) denote the independent product of the random walks
in Lemma 1.3.1. We have the followmg Feynman-Kac formula for the two-point functions
of the dual process. The proof is the same as that of Lemma 2.1.1.

Lemma 4.2.1
PIM, M5 =lal* Y Mo MozPElel (=S, —8) = (. D] forally,FeZ,
x,xezd

(4.6)

where

e —Hw( Sus=Sus =Su-1, =Su-1), (cf- 22). (4.7)
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Consequently,
PINPl= Y Mo MozP}3[ef]. (4.8)
x,xezd
and
sup P[|M,|*] < oo <= sup P;)’g [ef] <o0 4.9)
teN teN ’
= P[|My|]=|My|. (4.10)

Lemma 4.2.1 can be used to obtain the following criteria for slow growth for GOSP,
DPRE, GOBP as in (2.15), (2.17) and (2.19):

p>To for OSP,
sup P[|M,|*] <00 <= d=>3and { my+ W <1  forGOBP, (4.11)
N
“ 2(2B) — 2A(8) <1In(1 /1) for DPRE.
sup P[|M,|*] <00 <= d=>3and pAgq > m for GOSP with g # 0. (4.12)
teN

Let us now turn to sufficient conditions for the dual process to be in the slow growth phase.
We first note that exactly the same statement as Theorem 3.1.1 holds true with N, replaced
by M, since the proof works for the dual process without change. In particular,

2dp+q < 1 for GOSP and GOBP,
[M,|=0("), ast— 00,as.if{ BA'(B) — A(B) > In(2d) for DPRE,
p+qg<l1 for BCPP.

In analogy with Theorem 3.2.1, we have:

Theorem 4.2.2 Let d =1, 2. Suppose that P[A?,O.y] < oo forall y € Z¢ and that
the random variable Z A\ x0 is not a constant a.s. (4.13)
xezd

Then, almost surely,

|H | {: O(exp(—ct)) ifd=1, ast —s 00 (4.14)
"l—o fd=2 ’ .

where ¢ > 0 is a non-random constant.

To explain the proof of Theorem 4.2.2, we introduce

1
Vt = m Z pi:l.yAt,x,)', te N*,

x,yeZd

where o, =1m,_ =0 M1/ IMi ). (4.15)

@ Springer



Phase Transitions for the Growth Rate of Linear Stochastic Evolutions 1057

We then have |M,| = V,|M,_,|, t € N*. Using this relation instead of (3.9), we can show
Theorem 4.2.2 in the same way as Theorem 3.2.1, except that we replace Lemma 3.2.2 by
Lemma 4.2.3 below.

Lemma 4.2.3 For h € (0, 1), there is a constant ¢ € (0, 0c0) such that
P [1 — Vth|_7-",,1] >c|(pf )| forallt e N*.

Proof We may focus on the event {|M,_;| > 0}, since the inequality to prove is trivially true
on {|M,_;| = 0}. By the last part of the proof of Lemma 3.3.1, we see that there exists a
constant ¢; € (0, 0o) such that

(v, = 1)?

D Pl1=V"FE_]>c P
() [ z|t]]_cl |:V,+l

|~7:t—l:| for all r € N*.

We write

Vi=Y p;y,Viy withV,, = al > Ay

xezd xezd

For fixed t € N*, {V,, y}yeza are non-negative random variables, which are i.i.d. with mean
one, given F;_;. Furthermore, V, , is not a constant a.s., because of (4.13). We therefore see
from [4, Lemma 2.1] that there exists a constant ¢, € (0, co) such that

(V, — 1)? *
P[ﬁlﬁ—l > e|(pf)?| forall t € N¥,

which, together with (1), proves the lemma. ]
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